NASA Aeronautics Research Institute

Development of Engineered Ceramic Matrix Composites

- S. V. Raj¹ (PI), R. Bhatt² and M. Singh²
 - 1) Glenn Research Center, Cleveland, OH
 - 2) Ohio Aerospace Institute, Cleveland, OH

Acknowledgements

Technicians: Mr. Ray Babuder; Mr. Robert Angus; Mr. Ronald Phillips &

Mr. Daniel Gorican

Program Manager: Dr. Koushik Datta (NARI)

Funding: NASA's ARMD Seedling Fund Phases I & II

Introduction

- Advanced aircraft engines require the use of reliable, lightweight, creep-resistant and environmentally durable materials.
- Silicon carbide-based ceramic matrix composite (CMC) technology is being developed to replace nickel-based superalloy blades and vanes.
 - Near term 1589 K (2400 °F) (cooled).
 - Medium term 1755 K (2700 °F) (cooled).

Factors Affecting Composite Properties

NASA Aeronautics Research Institute

Composites are engineered systems, whose properties depend on:

- Fiber properties
- Matrix properties
- Interfacial properties
- Volume fractions of the constituents
- Processing
- Fiber weave architecture
- Fiber coatings
- Protective coatings (e.g. EBCs, TBCs)

Typical Microstructures of As-Processed BN-Coated Hi-Nicalon MI SiC Composites

NASA Aeronautics Research Institute

(Courtesy M. Singh)

Density ~ 96-97 %

NAMA Current SiC/SiC CMC Matrix Capabilities

NASA Aeronautics Research Institute

- Matrix fills space and provides a thermally conductive path.
- Fracture toughness due to crack bridging and interface debonding.
- Relatively low matrix cracking strength -

 $\sigma_{\text{design}} < \sigma_{\text{proportional limit}}$

- Brittle at all temperatures.
- No crack tip blunting fast crack propagation.
- No self-healing.
- Oxygen ingress to the fiber coatings shortens fiber life.
- Free Si in the matrix limits temperature usage (melting point of Si: 1687 K; 1414 °C; 2577 °F).

Recession of BN and Formation of Glassy Phase in BN-Coated Hi-Nicalon MI SiC Composites

NASA Aeronautics Research Institute

(Courtesy M. Singh)

T = 973 K; σ = 250 MPa;1000 h in air

2BN (s) + 3/2
$$O_2(g) = B_2O_3(l) + N_2(g)$$

B₂O₃ - SiO₂: Low eutectic temperature of 372 °C

Important Question

NASA Aeronautics Research Institute

Can the matrix constituents be suitably engineered to develop a new generation of Engineered Matrix (Ceramic) Composites (EMCs) with improved properties and tailored for a specific component?

Crack Tip Blunting and Self-Healing

Innovation and Expected Impact

- ❖ High temperature matrix greater than 1589 K (1315 °C/2400 °F)
- Matrix plasticity increased reliability, compliant matrix.
- Chemical and thermal strain compatibility with the coated SiC fibers.
- **❖ Self-healing matrix prevents or minimizes oxygen ingress.**
- Low free Si reduces fiber attack, reduces incipient melting, increased high temperature capability.
- Dense matrix high thermal conductivity.

Historical Perspective

NASA Aeronautics Research Institute

Pre-1980s Current Concept

Monolithic ceramics

Ceramic matrix composites (CMCs)

Engineered matrix composites (EMCs)

Low toughness Low strength

Higher toughness Higher strength Free silicon Crack blunting & self-healing
Low free silicon
Higher toughness
Higher strength
Higher temperature

Technical Approach

- Plasticity Introduce a chemically stable metallic silicide.
- Temperature capability Choose silicides with melting points higher than that of Si (m.p. 1687 K; 1414 °C; 2577 °F).
- Thermal expansion Match thermal expansion of the engineered matrix (EM) with the SiC fibers.
- Self-healing capability Add constituents to heal cracks with low viscosity oxides or silicates.
- Low Si Melt infiltrate with silicide instead of Si.
- Dense EMCs Slurry infiltration and melt infiltration.

Silicide Additives

- CrSi₂
- MoSi₂
- TiSi₂
- WSi₂
- CrMoSi alloy

<u>Matching Thermal Strains:</u> <u>Theoretical Concept</u>

Matrix Design Concept

$$(\Delta L/L_0)_{\text{fiber}} = (\Delta L/L_0)_{\text{EM}} = V_{\text{silicide}}(\Delta L/L_0)_{\text{silicide}} + V_{\text{SiC}}(\Delta L/L_0)_{\text{SiC}} + V_{\text{Si3N4}}(\Delta L/L_0)_{\text{Si3N4}}$$

Concept	V _{silicide} (%)	<u>V_{SiC} (%)</u>	<u>V_{Si3N4} (%)</u>
Traditional	0	100	0
Present investigation	X	(100-x-y)	y

Objectives

- Evaluate different engineered matrices based on theoretical concepts.
- Proof of concept: Demonstrate thermal strain compatibility with SiC.
- Evaluate bend and oxidation properties.
- Evaluate self-healing compositions.
- Fabricate and test engineered matrix composites.

Matrix Processing Steps

Hot-Pressed Plate and Optical Micrograph

NASA Aeronautics Research Institute

<u>CrMoSi/SiC/Si₃N₄ (CrMoSi-EM)</u>

50 x 50 x 4 mm

Optical micrograph

Back Scattered Image and Energy Dispersion Spectra: CrMoSi/SiC/Si₃N₄ (CrMoSi-EM)

Proof-of-Concept: Thermal Strains

Macrograph of the Surface of a Thermally Cycled CTE MoSi₂/SiC/Si₃N₄ Specimen

NASA Aeronautics Research Institute

MoSi₂/SiC/Si₃N₄ engineered matrix dropped from the program.

<u>Isothermal Oxidation Behavior of</u> <u>Engineered Matrices</u>

NASA Aeronautics Research Institute

TiSi₂/SiC/Si₃N₄ and WSi₂/SiC/Si₃N₄ engineered matrices dropped from the program

Four-Point Bend Stress-Strain Curves for a CrSi₂ Engineered Matrix

NASA Aeronautics Research Institute

Crack blunting due to crack tip plasticity increases bend strength

Four-Point Bend Stress-Strain Curves for a CrMoSi Engineered Matrix

CT Scan and a Schematic of the BN-Coated SiC/SiC Preform

NASA Aeronautics Research Institute

CT Scan

Schematic of void distribution

Void volume fraction ~ 25%

Matrix Composite Fabrication

Microstructures of TiSi₂-EM-Infiltrated SiC Fiber Preform

CT Scans of TiSi₂/SiC/Si₃N₄ Particulate Epoxy and Si- Melt Infiltrated Preform

TiSi₂/SiC/Si₃N₄ epoxy infiltrated preforms

NASCrMoSi/SiC/Si₃N₄ Epoxy Infiltrated Preforms

Particulate and Silicon Melt Infiltrated SiC/SiC Preforms

Poom Temperature Bend Stress-Strain Curves for CrMoSi EMCs

NASA Aeronautics Research Institute

Heat treated in air at 1600 K for 50 h

Different Additives to CrMoSi-SiC at 1600 K

NASA Aeronautics Research Institute

CrB₂ addition shows the best ability to heal scratches

Self-Healing of CrMoSi-SiC with 5%CrB₂ at 1700 K after 100 h

Self-Healing Characteristics of CrMoSi-SiC-CrB₂ Oxidized at 1700 K for 100 h

Summary and Conclusions

- A concept for developing a new class of high temperature engineered matrix composites (EMCs) with crack blunting, self-healing and low Si capabilities using intermetallic silicides is proposed.
- The following concepts have been demonstrated:
 - > Thermal expansion of the engineered matrix can be matched with that of SiC.
 - Increased matrix ductility can lead to higher bend strengths due crack blunting.
 - Promising self-healing additives have been identified.
 - CrSi₂/SiC/Si₃N₄ and CrMoSi/SiC/Si₃N₄ engineered matrices have been identified for 1589 K (2400 °F) and 1755 K (2700 °F).
- Several new compositions have been formulated for further studies.
- Fabrication of dense EMCs has proved to be challenging due to insufficient particle infiltration in the coated SiC/SiC woven preforms and due to poor capillarity action of the silcide alloys.

Distribution and Dissemination

NASA Aeronautics Research Institute

Applied for US Patent (May 30, 2013) –NASA Docket No: LEW 18964-1

Title: Engineered Matrix Self-Healing Composites

S/N: 13/905,333; Filed: 5/30/13

Inventors: Sai Raj, Mrityunjay Singh, Ramakrishna Bhatt

- S. V. Raj, M. Singh and R. Bhatt, "High-Temperature, Lightweight, Self-Healing Ceramic Composites for Aircraft Engine Applications", NASA Tech Briefs, vol. 37, No. 2, p. 40 February 2013; http://www.techbriefs.com/component/content/article/5-ntb/techbriefs/materials/15663-lew-18964-1.
- S. V. Raj, M. Singh and R. Bhatt, "Preliminary Studies on the Development of Engineered Matrices for SiC Fiber-Reinforced Ceramic Composites", 38th Annual Conference on Composites, Materials and Structures, Cocoa Beach, FL Jan 26-30, 2014
- Journal paper submitted for DAA 1676 management approval.

Next Steps

- The research has been transferred to ARMD's Aero Sciences Program (FY 14).
- Methods to increase particulate loading and silicide melt infiltration of the preforms are being studied.
- Dynamic fracture toughness tests are underway to quantify the self-healing capabilities of several engineered matrices.
- Bend and tensile creep tests of several engineered matrix specimens are planned.
- Final ARMD report.